Alzheimer‐related protein APL‐1 modulates lifespan through heterochronic gene regulation in Caenorhabditis elegans
نویسندگان
چکیده
Alzheimer's disease (AD) is an age-associated disease. Mutations in the amyloid precursor protein (APP) may be causative or protective of AD. The presence of two functionally redundant APP-like genes (APLP1/2) has made it difficult to unravel the biological function of APP during aging. The nematode Caenorhabditis elegans contains a single APP family member, apl-1. Here, we assessed the function of APL-1 on C. elegans' lifespan and found tissue-specific effects on lifespan by overexpression of APL-1. Overexpression of APL-1 in neurons causes lifespan reduction, whereas overexpression of APL-1 in the hypodermis causes lifespan extension by repressing the function of the heterochronic transcription factor LIN-14 to preserve youthfulness. APL-1 lifespan extension also requires signaling through the FOXO transcription factor DAF-16, heat-shock factor HSF-1, and vitamin D-like nuclear hormone receptor DAF-12. We propose that reinforcing APL-1 expression in the hypodermis preserves the regulation of heterochronic lin-14 gene network to improve maintenance of somatic tissues via DAF-16/FOXO and HSF-1 to promote healthy aging. Our work reveals a mechanistic link of how a conserved APP-related protein modulates aging.
منابع مشابه
The zinc-finger protein SEA-2 regulates larval developmental timing and adult lifespan in C. elegans.
Like other biological processes, aging is regulated by genetic pathways. However, it remains largely unknown whether aging is determined by an innate programmed timing mechanism and, if so, how this timer is linked to the mechanisms that control developmental timing. Here, we demonstrate that sea-2, which encodes a zinc-finger protein, controls developmental timing in C. elegans larvae by regul...
متن کاملAPL-1, the Alzheimer's Amyloid precursor protein in Caenorhabditis elegans, modulates multiple metabolic pathways throughout development.
Mutations in the amyloid precursor protein (APP) gene or in genes that process APP are correlated with familial Alzheimer's disease (AD). The biological function of APP remains unclear. APP is a transmembrane protein that can be sequentially cleaved by different secretases to yield multiple fragments, which can potentially act as signaling molecules. Caenorhabditis elegans encodes one APP-relat...
متن کاملTranscriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan
BACKGROUND Insulin/IGF-1 signaling plays a central role in longevity across phylogeny. In C. elegans, the forkhead box O (FOXO) transcription factor, DAF-16, is the primary target of insulin/IGF-1 signaling, and multiple isoforms of DAF-16 (a, b, and d/f) modulate lifespan, metabolism, dauer formation, and stress resistance. Thus far, across phylogeny modulation of mammalian FOXOs and DAF-16 ha...
متن کاملDetermination of the effects of food preservatives benzoic acid and sodium nitrate on lifespan, fertility and physical growth in Caenorhabditis elegans
Presently, the use of protective food additives such as benzoic acid and sodium nitrate is quite common. However, it was found that these additives, which initially appeared to be harmless, led to the emergence of a number of health problems. Cancer and diseases and deaths with no apparent causes are among the leading concerns. Therefore, the studies which can reveal the genotoxic potential of ...
متن کاملDRE-1: an evolutionarily conserved F box protein that regulates C. elegans developmental age.
During metazoan development, cells acquire both positional and temporal identities. The Caenorhabditis elegans heterochronic loci are global regulators of larval temporal fates. Most encode conserved transcriptional and translational factors, which affect stage-appropriate programs in various tissues. Here, we describe dre-1, a heterochronic gene, whose mutant phenotypes include precocious term...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2016